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A TECHNIQUE OF COMPARATIVE ANALYSIS OF UNDERWATER
SOUND TRANSMISSION LOSS CURVES

INTRODUCTION

A number of computer programs for intensity calculations are now widely available to scientists
engaged in underwater sound studies. These programs produce curves which indicate transmission loss
as a function of range, comparable to the type derived from available experimental data. Some of the
more sophisticated models, such as TRIMAIN used at NRL, can handle horizontal variations in sound
speed and include bottom topography, and produce four different types of intensity calculations.

There is a need for a systematic comparison of true intensity curves predicted by a model with
those obtained by field measurements. Such a procedure would facilitate the modeling process by pro-
viding quantitative measures of model adjustment effects. The objective of this study was to develop
an analysis procedure capable of meeting this requirement.

Acoustic intensity curves have three basic components: a long-term trend, oscillations about this
trend and residual random effects. One or more of these components may not be present to a
significant degree, depending on a given physical situation. The procedure we have developed is
designed to establish the existence of the components, and to isolate them for separate examination and
quantitatively estimate their contribution. An outline of the recommended procedure follows. The
procedure has been exercised on acoustic models and experimental data, with detailed results given in
the second section of this report. The report ends with conclusions regarding the progress to date in
the development of the procedure and recommendations for further study. The appendix of this report
is devoted to a complete description of the procedure which includes specific formulas and a discussion
of underlying assumptions.

PROPOSED ANALYSIS PROCEDURE

Given an intensity curve X(r), the long-term trend is assumed to be of the elementary form
XL (r) = A + B log r (Fig. la). The A and B coefficients are determined by least squares formulas.
The residuals constitute a derived curve, X'(r) (Fig. lb). The subsequent tests used depend upon the
presence of significant randomness in X'(r), as measured by a turning point test [1]. If the residuals
are random, the intensity curve, X(r), is described by only two components; the long-term trend,
XL (r), and the random residual, X'(r). To compare two-component curves of this type, similarity tests
based on confidence intervals for A and B and an estimate of the standard deviation for X'(r) can be
used. We can also compare curves by examining the distributions of variance between the XL () and
X'(r) components. If the curve X'(r) fails the test for randomness, then a third significant, oscillatory,
component exists. In this case, the subsequent comparisons of trend coefficients can be made disre-
garding the oscillatory component with a small loss in comparison precision. Alternately, if full compli-
ance with statistical assumptions is necessary, the oscillatory component can be removed and a second
regression made for refined trend parameter estimates.

In a large percentage of cases, transmission-loss curves possess a strong oscillatory component.
We have assumed it to be of the form

n
Xo(rk) = aj X'(rk-j)

Manuscript approved February 24, 1983. }
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Fig. I - (a) A three-component propagation loss curve with an exponentially decaying average overlay (dashed line); (b) the
derived oscillatory curve, X(r), after the trend in Fig. I(a) is removed; Fig. (c) an autoregressive estimate, Xo(r), of the resi-
dual oscillations in Fig. I(b); Fig. (d) the final residual, XR (r)R, equaling the difference between the oscillatory residual of Fig.
I (b) and the oscillatory estimate of Fig. (c).

Calculation of the coefficients [aj] is discussed in the appendix of this report. Briefly, it requires the
solution of a system of equations involving the autocorrelation function for X'(r). The autocorrelation
function is also used to estimate the principal period of a transmission-loss curve, such as the conver-
gence zone period, and further, to calculate a zone-spacing ratio, designed to compare the oscillation
periods of two curves. To show whether the autoregressive scheme is complete, the residual com-
ponent XR (r) is obtained as XR (r) = X'(r) -XO(r) (Fig. lc,d). At this stage, a turning point test is
again applied to see if XR (r) satisfies a randomness criterion. If not, refinements are necessary in the
autoregressive fit procedure.

After the separation into components has been accomplished, curves for model or experimental
data can be compared for the distribution of variance among these components. The comparisons are
quantitative, reproducible, and contain probability thresholds, or confidence intervals all of which can
be used for systematic comparison of data sets, model sets or data/model tests.

2
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A COMPARATIVE ANALYSIS OF UNDERWATER SOUND TRANSMISSION LOSS CURVES

This section presents results obtained from use of the analysis procedure for a model/
experimental comparison study. The objectives are to:

* Examine and show for example the practical application of the procedure.

* Test the resolution of the methods on two similar data sets arising from slightly different
conditions.

* Test the resolution of the method in a comparison of data vice against model perfor-
mance.

* Test the resolution on model curves to distinguish algorithm differences.

The experimental data were obtained during a controlled run of 300 nmi by the USNS Mizar,
directed by excellent satellite navigation. The signal sources were small explosive charges carefully
timed with synchronized WWV clocks for precise range and depth control. The shot spacing was 1/2
nm and the depth 91.4 m. Sound speed profiles were measured at the ends and in the track center;
detailed bathymetry was measured throughout the run. The signals were received by hydrophones
suspended from two ships, the R/V Knorr and USNS Gibbs, stationed at the beginning and end of the
track, respectively. The Knorr phones were vertically separated by 150 m, with the lower unit at a
depth of 3386 m. The same arrangement was used for the Gibbs phones, with the bottom unit at a
depth of 3020 m. Transmission-loss curves were computed for two low-frequency third-octave bands,
separated by 50 Hz. Table 1 shows the labeling systems used for the curves.

Table 1 -Experimental Intensity Curves

Curve Ship Hydrophone Frequency
KXUL KNORR Upper Low
GXUH GIBBS Upper High

A series of intensity curves to be used for measured and predicted comparisons were generated
largely by the computer program TRIMAIN using measured bathymetry and sound-speed profiles,
along with the appropriate source and receiver depths. Using incoherent Type I, summation intensity
calculations [1], three curves corresponding to the experimental runs were generated. A second, Type
II method [2] using a ray weighting based upon an exponential probability distribution function in depth
was used on two program runs. A third method used a Lloyd Mirror (LM) correction for proximity to
the surface. A listing of the resultant TRIMAIN curves used for our analysis is given in Table 2.

Table 2 - TRIMAIN Model Intensity Curves

Curve Ship Phone Type Frequency
KTUI KNORR Upper I
KTUL (LM) KNORR Upper I Low
GTUI GIBBS Upper I
GTUII GIBBS Upper II

3
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In addition, one run was made with the Fast Asymptotic Coherent Transmission model (FACT)
to match the first 250 values of the curve KXUH. The FACT Program contains a first-order caustic
computation but is restricted to a single sound-speed profile and flat horizontal bottom. We denote the
intensity curve for this case as KFUH and, for comparison, use only the first 250 values of the
corresponding experimental curve, denoted as KXUH(F).

In the remaining articles we discuss the results obtained as the analysis procedure was applied to
the experimental and model curves listed above. We have selected two groups of curves: The first
consists of KXUL, KTUI, and KTUL (LM) (Figs. 2a,b,c); that is, an experimental curve for the Knorr
data, with two corresponding TRIMAIN runs, differing in the type of intensity calculations used. The
second group is a similar selection, comprising the curves GXUH, GTUI, and GTUII (Figs. 3a,b,c),
based on the Gibbs data.

LONG-TERM TRENDS

Following the discussion of the appendix of this report, the long-term trend is assumed to be of
the form A + B log (r), and least-squares Eqs. (A2) and (A3) are used to calculate the coefficients A
and B. The residual curves remaining after trend removal are denoted with a prime (') superscript.
Thus,

KTUI'= KTUI (rk) - A - B log (rk). (1)

The long-term trend and the standard deviation of the residual curve are used to define the data
trend bands shown in Figs. 2 and 3. Note that each figure displays an experimental curve and two
model curves. The bands are defined by displacing the long-term trend of the experimental curve
upward and downward. The distance moved is two standard deviations, as calculated from the residual
of the experimental curve after long-term trend removal.

A band-fit coefficient can be calculated as a measure of the goodness-of-fit of the model curves.
It consists of the percentage of band-confined model data points divided by the percentage of experi-
mentally measured data points falling within the band.

Table 3 tabulates the data trend bandwidth and band-fit coefficients to provide a simple numeric
comparison of model-generated and field-measured data. This test is not of the same rigor as the sta-
tistical measurements tabulated in table 4 below. However, it is recommended for display and presenta-
tion in conjunction with the type of plots shown in Figs. 2 and 3.

Table 4 lists the results of the trend estimation on several model and two experimental data
suites. The significant features of this compilation are:

* The mean values of the data sets are different and ordinarily would reflect systematic bias in a
entire suite under comparison, a calibration error or possibly a bottom condition at a near bottomed
receiver not adequately modeled. The confidence interval for this mean is included, for statistical com-
parison, in this grouping.

* The regression coefficient, B, shows the estimated exponential power decay of the sets. In the
first Knorr group, we see a distinctly sharper fall (larger exponent) in the two model sets. These model
runs were included to show how a modeling error, ray drop out, purposely produced and plotted Fig.
2b,c, can produce a definite measurable difference. The effect is also reflected in the mean value
difference. Next, considering the Gibbs suite, we see a case of strong smoothing (GYTUII) suppressing
the growth of the decay constant, B, and also increasing the model mean to near the observed set seen
in GXUH. While the range smoothing has been deliberately overdone for illustration, it is clear that
models could be brought into correspondence by this method with data, and more discriminating tests
for spectral content might be required for distinct numeric separation.
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Fig. 2 - (a) The measured and fully corrected estimates of propagation loss taken
on board the R/V KNORR; (b) TRIMAIN model calculations employing the bathy-
metric and velocity profile information acquired during the measurement of Fig.
2(a); (c) A second TRIMAIN calculation followed by the application of a Lloyd Mir-
ror correction; (both model calculations are produced with deliberate flaws in the
number of rays included beyond 250 km to provide material for the analysis tech-
nique to discriminate).
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Fig. 3 - (a) The measured and fully corrected estimates of propagation loss taken
on board the USNS GIBBS; (b) model calculations utilizing TRIMAIN and employ-
ing the same bathymetric and velocity profile information acquired during the meas-
urement of Fig. 3(a); (c) A second TRIMAIN calculation followed by the application
of a Lloyd Mirror correction.
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Table 3- Data Trend Bandwidth

Exp. Model Data Trend Band
Curve Curve Bandwidth Fit. Coeff.

(dB)
KXUL KTUI 17.6 .78
KXUL KTUL(LM) 17.6 .62
GXUH GTUI 15.0 .64
GXUH GTUII 15.0 1.01
KXUH(F) KFUH 16.5 1.00
KXUH(F) KTUI(F) 16.5 1.03

Table 4 - Results of Long-term Trend Removal

Std.
Conf. Conf. Deviation

Curve Mean 95% Slope 95%
Designate M M ByB Data,S Resid. Sp

KXUL 90.1 .5 12.6 1.1 6.1 4.4
KTUI 96.8 .6 17.6 1.3 7.8 5.2
KTUL(LM) 98.1 .7 18.5 1.5 8.7 6.1

GXUH 95.6 .4 13.6 1.1 5.4 3.8
GTUI 101.5 .8 14.8 2.7 10.2 9.3
GTUII 95.9 .4 9.5 1.0 4.3 3.4

KXUH(F) 88.2 .8 16.3 1.8 6.2 4.1
KFUH 88.9 .8 19.2 1.6 6.5 3.6
KTUI(F) 91.3 .7 15.1 1.6 5.6 3.6

* In the third set in Table 4, we have a comparison of the FACT model with data. A slight
bottom-loss adjustment would probably raise the mean and decrease the decay constant, B, to near per-
fect coincidence. One advantage this last set shows in model/data comparisons is how range constraint
improves the quality of the match. The last curve, KTUI(F), is a TRIMAIN estimate run to the same
250-range-point limit of the FACT model and quantitatively shows that at lesser ranges, the ray density
is adequate, and the model improves. Generally, as might be expected, long-range predictions and
comparisons prove the most difficult and are likely to require the techniques described in this report.

* The last two columns of Table 4 show the original variance and the remaining or residual vari-
ance. This last column, in particular, illustrates the effects of smoothing in the GTUI/GTUII contrast.
A variance comparison test, such as the F test discussed in Ref. 2, is ideal for quantitative smoothing
comparisons or processing bandwidth comparisons.

Following a set of qualitative comparisons as previously described, assume that we have further
noted and examined for cause the difference in mean and coefficient estimates and noted the
confidenced intervals on each. More detailed comparisons of two data suites require the following addi-
tional calculations:

* Generally for curve parameter comparison, it is essential for the data to originate from the
same population. This can be tested by forming the F ratio of the residual variances of
each curve pair. Approximate similarity is usually sufficient.

7
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* Using a pooled residual variance, a standard deviation of the difference of the regression
coefficient, (decay constant) is computed.

* A confidence interval in this difference variance is then computed using the T distribu-
tion.

While each of these steps is described in standard texts on statistics, a factor not immediately
apparent is that these three steps can be approximated accurately as follows:

* If the variances are nearly the same, assume the populations are the same.

* Usually most experimental model comparisons will involve large numbers (50 or more)
points, and pooling for more accurate variance estimation is marginally useful and may be
ignored.

* The confidence coefficient for the difference in two coefficients is simply computed as the

square root of the sum of the squares of the two subject coefficients.

As an example of the preceding procedure, Table 4 shows Gibbs data, GXUH, whose residual
variance is 3.8 dB. The TRIMAIN model with range averaging, GTUII, gives 3.4 dB. Let us assume
these are equal. The 95% confidence interval halfwidth for B is about 1.1 in each case which gives
combined (root of the sum of the squares) difference halfwidth of 1.6. The difference in the
coefficients, however, is 4.1, that is, 13.6 - 9.5. This greatly exceeds our 95% interval and we may say
the probability is less than one in twenty that the curves are the same. In this instance, the model
parameters definitely need adjustment:

The simplified technique also can be used to compare the means of two groups. Using the same
Gibbs data/model, GXUH/GTUII, Table 4, we have for the 95% confidence interval on the difference
in means, a root-of-sums squared of 0.6 which is not exceeded by the 0.3-dB difference in means.
Thus, the smoothing brought the mean under control, reduced both the data variance (10.2 to 4.3),
and the residual variance (9.3 to 3.4), a small amount more than required, but rendered the slope
unsuitable, (14.8 to 9.5).

A conclusion of this comparison is: less smoothing and some physical factor related to mean off-
set probably require consideration.

The second phase of the trend analysis procedure requires the residual curves, X, to be tested for
randomness with the turning point test (see Appendix A.2). Based on the hypothesis that the curve is
random, confidence limits for the number of turning points are calculated, using Eq. (A.8). Table 6
gives these limits, and the observed count of turning points for the six selected curves whose plots will
be examined.

In each case, the number of turning points falls outside the limits. Thus, we reject the hypothesis
of randomness and conclude that each of the curves in Table 6 has a significant oscillatory component.

OSCILLATORY RESIDUAL CURVE ANALYSIS

The turning point test for randomness establishes the existence of significant oscillations in the
trend residual. Each of the model and experimental residual curves which are given in Figs. 4-7, exhi-
bit this strong oscillatory component. To begin the analysis, we may express one of the residual curves,
X'(r) as

X'(r) = X0 (r) + XR (r) (2)

8
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Here X0 (r) is the oscillatory component, and takes the form of an autoregressive scheme,

Xo(rk) = alX'(rk-1) + a2X(rk - 2) + ... + am X(rkam). (3) 2?
The final curve, XR (r), will then be a purely random sequence.

The procedure for autoregressive scheme fitting, as discussed in Ref. 3, involves the choice of an
order m, and the calculation of the coefficients a,, a2, ... , am as the solution of a system of equations
defined by the autocovariance function of the curve X(r). A FORTRAN computer code of the type
devised by Robinson [4 Section 2.81 was used for this purpose. To provide a measure of completeness,
the normalized mean square error, Em, is calculated as the ratio of the residual variance to the trend
variance, the program estimates Ek for all orders k less than or equal to m and calculates the coefficients
a,, a2, ... am. To provide an accurate estimate of the residual variance for a variety of curve types, a
large value for m is recommended. After several trials, the value m = 128 was sufficient for essentially
all cases while requiring less than two minutes of machine time. In running the program for this order,
the differences between values of E.' and Em-i were less than 0.002 in all cases, indicating that the resi-
dual variance had reached a stable level. After the autoregressive scheme fit has been made, the final
residual component is tested for randomness by using Kendall's turning point test.

Table 5 lists the essential information obtained in the autoregressive analysis. The first column
gives the normalized mean square error at m = 128. This is followed by the 95 percent confidence
intervals for the turning point test, along with the observed number of turning points for each residual
curve. In each case, this value falls within the confidence limits, and we can accept the hypothesis of a
random residual curve. Figures 6 and 7 show the autoregressive scheme fits which were calculated as
the oscillatory component of six representative curves.

Table 5 - Separation of Zero-Mean Curves into
Oscillatory and Residual Components

Mean Sq. Confidence
Curve Error Intervals for Observed No. of

E_28 _urning Points Turning Points
KXUL' .119 361 399 366
KTUI' .606 361 403 402
KTUL(LM)' .623 365 403 387

GXUH' .337 359 397 364
GTUI' .518 365 403 371
GTUI' .018 336 373 344

KXUH(F) .T3 150 174 159
KFUH .093 139 162 140

The autocorrelation function calculated as part of the preceding above procedure can be used to
estimate the principal period of the oscillatory component. This interval is calculated from tabulation of
the correlation function and is the interval between successive maxima. Usually several cycle peaks will
be clearly evident and the average computed will accurately reflect the chief periodic phenomenon. In
the case of all the present examples, this is the convergence zone cycle. This cycle can be used to
define the zone cycle ratio, ZC = (C1 - C2)!CI to provide fractional error comparison of the curves
with periodicities. Table 7 shows cycles in nautical miles and the period ratios for the several model
runs as compared with the two sets of experimental data.

9
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Table 6 - Test for Randomness at 95 Percent
Confidence Interval

Number of
Curve Confidence Limits Turning Points

Lower Upper
KXUL' 362 401 214
KTUI' 360 400 357
KTUL(LM)' 364 404 349
GXUH' 345 383 272
GTUI' 363 402 309
GTUII' 337 374 109
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Table 7 - Zone Cycles and Zone Spacing Ratios for
Oscillatory Components

Curves
Curves ZR

Exp. C1 (nmi) Model C2 (nm)
KXUL 33.1 KTUI 35.1 -0.060
KXUL 33.1 KTUL(LM) 34.1 -0.030

GXUH 32.6 GTUI 34.1 -0.076
GXUH 32.6 GTUII 34.6 -0.061
KXUH (F) 31.3 KFUH 36.0 -0.150

The values shown in Table 7 indicate that the sample model cycles are greater than the experi-
mental. The Lloyd's mirror calculations and Type II representations do not change the principal cyclic
structure significantly as this is a fundamental characteristic of each measured or predicted curve which
is not affected even by a heavy smoothing operation.

Comparison of Variances

At each stage of the separation process, estimates were made for the variance of the component
curves, using the familiar formula,

(4)V N= I N k ) )2-

Here X is the mean of the curve, and N is the number of range values. In this manner, we arrived at
estimates of the variances, V for the initial curve, VL for the long-term trend, V for the trend residual
curve, VO for the oscillatory component, and VR for the final residual. Table 8 lists these values for
our illustrative set of curves.

Table 8 - Variances for Component Curves

Curve V VT(= VL + Vo+ VR) IV V Vt+VR L Z V
KXUL 37.30 37.05 17.99 19.31 19.06 16.86 2.20
KTUL(LM) 75.43 72.49 38.44 36.99 34.05 13.28 20.77
KTUI 61.53 59.31 34.76 26.76 24.55 9.41 15.14.

GXUH 29.13 28.86 15.10 14.03 13.76 9.14 4.62
GTUI 103.36 101.78 17.75 85.61 84.03 40.39 43.64
GTUII 18.75 18.72 7.40 11.35 11.32 11.10 0.22

KXUH(F) 3S.34 38.02 21.25 17.09 16.77 14.28 2.50
KFUH 41.56 42.35 29.54 13.01 12.81 11.56 1.25

Thus, if we have separated the initial curves into independent components, we should have
V = VO + VR, and V = VL + VO + VR. In practice, the results were very close to the theoretical,
with the largest discrepancy about 8 percent of the amount involved. Table 9 lists the proportions of
the initial variance which can be attributed to each of the three components with the fractions normal-
ized to the total for each curve.

14



NRL REPORT 8711

Table 9 - Distribution of Variances

Curve PL= VL/ VTOT Po = Vo/ V PTPR = VR/ V70 T
KXUL .486 .455 .059
KTUL(LM) .530 .183 .287
KTUI .586 .159 .255

GXUH .523 .317 .160
GTUI .174 .397 .427
GTUII .395 .593 .012

KXUH(F) .559 .376 .066
KFUH .696 .273 .030

In summarizing the observed three part variance distribution of our sample set, a number of
observations can be made:

* Both of the experimental data sets show a comparatively small amount of residual vari-
ance that is only approached by the FACT model operating on a restricted range of data
and the smoothed TRIMAIN model on the whole range. In both model instances,
extreme excursions are controlled; this parallels the frequency domain averaging that is a
feature of typical (1/3) octave propagation data acquired with explosive charges. We
would expect a measurement made with a narrow band source to more closely match the
random variability of model data (excluding the ray dropout cases included here only as
negative examples).

* A strong periodic component, developed from convergence zones in the present data, and
not unusual in other instances, can be expected to be always present. Simple bottom-
limited propagation would be a common case not likely to show periodic components.

* An elementary point is that the variance distribution such as observed in Table 9 is clearly
affected by the proximity of the first point to the origin; starting at greater ranges, the first
term would be smaller in all cases.

The statement of the guiding nature of these quantitative measures must be reiterated. The three
summary remarks show how each of the components as well as their distribution are affected by meas-
urement techniques, range, and computational procedures. Strong conclusions can be drawn in specific
cases and these can be strongly supported and have considerable sensitivity; however, the methods are
not automatic and their application is supportive to the analyst who retains responsibility for their
correct application and results.

CONCLUSIONS AND RECOMMENDATIONS

A sequence of known statistical procedures has been gathered and used on the comparative
analysis of measured and calculated propagation loss data. The procedures deliberately have been kept
simple to promote widespread use with a minimum of computer or calculator expense. The cases
chosen for examples in Table 3, show the 95% confidence interval on the mean of the sets is on the
order of 0.6 dB even though a number of the model runs were purposefully flawed for illustration.
This sensitivity for calibration checks; flux density estimates and hydrophone calibrations, etc. were
unexpected. Similarly the exponential decay constant 95% confidence intervals, or slopes, were of
order 0.15 where 20 would be spherical spreading. All the cases were readily distinguishable. The dis-
tribution of variance in the tested cases shown in Table 9 also showed marked distinctions between
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model types as well as experimental data. The convergence zones of the chosen sample data were
remarkably periodic so that in the two examples the oscillatory and long-term trend were near equal in
power, and the final random residual variance was only 6 and 16% in the two cases. The model results
were deliberately not tuned to the experimental data to better reflect what a first application of the
methods would produce. As a consequence, most of the model outputs contained a much larger ran-
dom residual component which was suppressed only in the smoothed cases. This is similarly, in retros-
pect, not unexpected since the computer models are comparable to continuous wave (very narrow
band) data and the experimental results have one third octave frequency domain averaging. In Table 7
shows another result where comparisons of measured and model convergence cycle lengths are listed.
All the model cycle lengths exceed all the experimental lengths. The discrepancies are small, 3%, but
consistent and estimated to result from velocity profile error.

The major objective has been to illustrate the surprising power of a sequence of comparatively ele-
mentary procedures and the major recommendation is to use objective measures such as those dis-
cussed in general experimental and analytic studies.
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Appendix
THE ANALYSIS PROCEDURE-A DETAILED DESCRIPTION

COMPUTATION OF THE LONG-TERM TREND

The threefold separation of major contributing components of a transmission-loss curve initially
uses the form XL (r) - A + B log (r), since over a considerable range, loss is either spherical, cylindr-
ical, or transitional. While more complex equations can readily be devised which will fit the data and
include more of the variance, they add more complexity without increasing comparison testing
effectiveness appreciably.

The analysis begins with the assumption that an intensity curve X(r) of the type depicted in Fig.
AI can be represented in the form

X(rk) - A + B log (rk) + X(rk), (Al)

where [rk] (k = 1, 2, ... N) is the sequence of range values. An application of standard methods,
[Al], yields the following expressions for estimates of the coefficients, and the residual variance. Note
the subscript, e, showing the estimate, as distinct from the true value, is shown only initially
throughout the following material.

A log (rk)X(rk) - (I log (rk)) (I X(rk)IN)]
Be, k k W

B= (log (rk))2 - [(: log (rk)) 2 /NI (A2)
k k

Ae =-I (£X(rk) - Be log (rk)), (A3)-N k k

, (X(rk) - A, - B. log (rk))2

52= k N-2 * (A4)

The type of test used to compare intensity curves in regard to long-term trend depends upon
whether there is a significant oscillatory component in the residual curve X(r). If a test shows the resi-
dual values mutually independent, comparison tests based on the methods of linear regression analysis
will apply. The tests are slightly weakened but still useful if significant oscillations are present. In spe-
cial, demanding, cases the techniques of Eq. (A4) can be used to remove the oscillating component
from the trend residual. The random residual remaining may be combined with the initial trend esti-
mate and coefficients, Eqs. (A2), (A3), and (A4) redetermined. Before proceeding with the compari-
son tests, it is necessary to decide whether the trend residual is a random variable. A statistical test, a
description of which follows, devised by M.G. Kendall [A2J is recommended for this purpose, because
of its simplicity and effectiveness.

A TEST FOR RANDOMNESS

The turning point test is based on the statistical hypothesis that the values
IX'(rk)) (k = 1, 2, ... n) are mutually independent; thus, they could have occurred in any order, each
order being equally likely. An observed valued x (rk) is called a turning point if

or if X(rk41) < X(rk) and X(rk) > X(rk+l),

X(rk-1) > X(rk) and X(rk) < X(rk+±). (A5)
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Fig. Al - (a) A three-component propagation loss curve with an exponentially decaying average overlay (dashed line); (b) the
derived oscillatory curve, X(r), after the trend in Fig. 1(a) is removed; Fig. (c) an autoregressive estimate, Xo(r), of the resi-
dual oscillations in Fig. 1 (b); Fig. (d) the final residual, XR (r)R, equaling the difference between the oscillatory residual of Fig.
1 (b) and the oscillatory estimate of Fig. I (c).

Let nT denote the number of turning points which occur in a time series of n distinct points. Assuming
the above hypothesis, Kendall has shown [A2,p. 22-241 that for fairly large sample sizes, nT is approxi-
mately distributed as a normal random variable with mean

= 2= (n -2), (A6)

and standard deviation

16n -29 (A7)
90

The test procedure is: Select a confidence level a. Reduce the series by removing repeated
values, leaving n distinct points, without changing their order of occurrence. Calculate ju and or by
using Eqs. (A6) and (A7). Then the 100 (1 - a)-percent confidence limits for nT are

Ao ± Or Za/2, (A8)

where Za/2 denotes a percentage point of the normal distribution. Count the observed number nT of
turning points for the series of distinct values. If nT is within the interval, we accept the hypothesis
and conclude that the curve has no significant oscillatory component. Therefore, X(r) consists only of
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a long-term trend and a residual, random component. This residual series may not be a purely random
process, but the oscillations it exhibits are not significant at the selected confidence level to warrant
description. If nT lies outside the confidence interval, then we reject the hypotheses, and conclude that
the series X(r) has a significant oscillatory component, which should be measured separately. The pro-
bability of making this decision when in fact the hypothesis is true is a.

TREND COMPARISON TESTS

Assume the turning point test has shown the residual curve XY(r) to be random at same accept-
able confidence level. By setting z - log (r) and E(r) - X(r), Eq. (Al) can be recast in the form

X-A +Bz+E, (A9)
and we can apply the results of linear regression analysis (see for example, Section 22.9 of Ref. Al,
Chapter 11 of Burr Ref. A3) to find confidence limits for A, B and the standard error of estimate. At
the 100 (1 - a) percent confidence level, we can calculate these limits as:

for B, the confidence limits are B,*LB where,

: taN -2 5e
LB, = [ (log (rk) - (, log (rk)/N))2 1/2 (A10)

k k

and

for A, the limits are Ae LA where

(log (rk))2

LA 2 l a N2 Se{ £ (log (rk) - (Y log (rk)/N))2 (All)
k ~~~k

Here t (a/2, N - 2) is a percentage point of the student t distribution.

The standard deviation of the limits are

S.- e | N2 J and S+ - S. N-2 12 2 (A12)
- XQ2,~lN-2 |- 1-,N-2|

Here X2 1, n is a percentage point of the Chi-square distribution.

In addition to the analytic comparisons previously described, a visual comparison plays the same
qualitatively useful role as in traditional data/model comparisons. One such scheme used here is to
superimpose the regression equation derived from one member of a comparison pair onto the data of
the other member. To guide such visual comparisons, two displaced regression curves are used,
separated by four residual standard deviations of the regression data. Equation (A13) shows the equa-
tion with subscripts, E, indicating experimental bounds, L, as illustrated in Figs. A2 and A3.

L =AE+BElog (r)± 2SE. (A13)

With the plotted band shown on the figures we have computed an elementary overlap type measure
called a Band-Fit (BF) coefficient as shown in Eq. (A14),

BF 5-. (A14)
PE
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Fig. A2 - (a) The measured and fully corrected estimates of propagation loss taken

on board the R/V KNORR; (b) TRIMAIN model calculations employing the bathy-

metric and velocity profile information acquired during the measurement of Fig.
2(a); (c) A second TRIMAIN calculation followed by the application of a Lloyd Mir-

ror correction; (both model calculations are produced with deliberate flaws in the

number of rays included beyond 250 km to provide material for the analysis tech-

nique to discriminate).
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Fig. A3 -(a) The measured and fully corrected estimates of propagation loss taken
on board the USNS GIBBS; (b) model calculations utilizing TRIMAIN and employ-
ing the same bathymetric and velocity profile information acquired during the meas-
urement of Fig. 3(a); (c) A second TRIMAIN calculation followed by the application
of a Lloyd Mirror correction.
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The PM is the percentage of model points (as in later illustrations) which fall within the band superim-
posed and defined by the experimental data. The denominator, P, is the percentage of experimental
data that is within the four-sigma band (Figs. A2 and A3).

SEPARATION INTO OSCILLATORY AND RANDOM RESIDUAL COMPONENTS

After the residual curve, X(r), has been shown nonrandom by the turning point test, the oscilla-
tory component must be separated from the final random residual. An autoregressive scheme was
chosen to meet this need because of its effectiveness, and the suitability of the auto covariance func-
tion. Our discussion of autoregressive processes follows that of Ref. [A41, where complete derivations
of the equations used can be found.

To begin with, an autoregressive process of order m, is defined as a second order uniformly sam-
pled stationary random process {X(k)} with zero mean, wihich satisfies the equation.

Y(k) = a, Y(k- 1) + a2 Y(k-2) + ... am Y(k -m) + Z(k) (A15)

where {Z(k)1 is a purely random process. Here the coefficients a,, a2 , ... am are constant, and Eq.
(A15) must hold for all observed values k =1, 2, ... N Note that arn autoregressive process consists
of two parts. The first, involving the coefficients aj is called the autoregressive scheme, and the second
is called the residual process.

An autoregressive process may be generated by selecting an order m, a set of coefficients {aj}
( = 1, 2, ... m) which satisfy a stationary condition, and a process {Z(k)1 obtained for example,
from a table of independent normal deviates. Conversely, if one is given a process (Y(k)j, then one
can attempt to fit an autoregressive process to { Y(k)) in the following manner. Estimates
a,, a2, ... am of the autoregressive scheme coefficients are obtained as the solution of the system of m
equations

Cy (1) = a1 cy(O) + a2 cy-1+ t. .-. am cy( m),

cy(2) = i C*(1) + a2 cy(c) + ... &m cj(2 - in), (A16)

cy(m) = a1 cy(m- 1) + d2 cy(m - 2) + .... m cy- (),

where cy(k) is the sample autocovariance of the process {Y(k)}.
; ' 1 ~~~N-k

cy(k) = N YQj) YQj + k)

(k= 0, 1, ... ,N-1). (A17)

Note that cy (0) will give us an estimate of the variance of {Y(k)}. It may be shown that the variance
of the residual process may be estimated by

Sz2= cy(0) -a Cy(1) - ...- a c(m). (A18)

To compare these two variances, we will use the normalized mean square error,

E= - S'2 /cy (0). (A19)

After the coefficients (a,, a2, ... am) have been calculated, the residual process is obtained by subtract-
ing the autoregressive scheme from { Y(k)). To check whether a valid fit has been made, the residual
should be tested to determine if it is purely random.

In selecting a time series model of this type, we are carrying out a program originally suggested in
a paper by Whittle [A5]. He argues that any zero mean, stationary process whose spectral density
satisfies a certain condition may be represented by an autoregression of infinite order. For such a pro-
cess, a reasonably accurate estimate of the residual variance may be obtained by fitting a finite autore-
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gressive scheme of sufficiently high order. The spectral condition requires that the reciprocal of the
spectrum be expandable in a Fourier series (for all practical purposes, that the spectrum be nowhere
zero), and is usually satisfied in practice.

Our analysis procedure then, is to calculate autoregressive scheme estimates for the different
curves under consideration, using increasing values for m, calculating the normalized mean square error
each time. Currently available computer codes (Robinson [A4] Section 2.8) enable us to do this with a
minimum of time and effort. We can thus determine a value mo for m, such that the reduction in Eo
for higher order fits is insignificant in all cases.

For comparison, autoregressive fits of order mo are then used for all curves being analyzed.
Granted that this requires an excessive number of terms in some cases, it provides a basis for compari-
son, without essentially affecting the estimate of the residual variance.

MEASUREMENTS FOR OSCILLATORY COMPONENTS

Suppose now that the curve X(r) has been expressed as the sum of an oscillatory component
X0(r) and a residual component XR (r). The oscillation can usually be attributed to some known physi-
cal cause such as the convergence zone effect. To study this phenomenon quantitatively, we next
obtain a measure of this oscillatory component. For this, the sample autocovariance function defined
by Eq. (A.6) is used. Thus, we calculate

1 N-k
c,(k) = , z X0 (r) X0 (rJ+k), (A20)

NJ-1

for k = 0, 1, ... N - 1. A typical graph of cy(k) would resemble that of damped oscillatory motion
starting at k = 0, with the variance cy(0) decreasing in magnitude as k increases. In most cases the
autocovariance function will be asymmetric or scalloped reflecting convergence zones, Lloyd mirror
variation, or other origins most of which produce periodic but not sinusoidal variation. The principal
period of the process is simply the distance between peaks of the function. To be specific, we will call
this quantity the zone period, P. If we have oscillatory components for curves Cl, C2 with zone
periods PI, P2 , then we may consider the zone spacing ratio, Z, defined by

P1 -P 2 (A21)

A positive value of z indicates that the C2 oscillation has a shorter period than that of C1.

DISTRIBUTION OF VARIANCES

Let us briefly review the separation procedure which has been proposed for intensity curves:
Starting with an initial curve X, a long-term trend XL, is removed, leaving a residual curve X. The
residual curve is then decomposed as the sum of an oscillatory component X0 and a random residual
component XR. We will denote by V, VL, V, V0 and VA the variances of the previous curves.
Because the three component series are uncorrelated, we will have

V = VO + VA, (A22)

and

V = VL + VO + VR. (A23)

Thus, the fractions VL/ V, Vol V, and VR/ V will adequately describe the distribution of the variance of
the initial curve. One measure of the validity of the separation process is the extent to which Eqs.
(A.22) and (A.23) hold. In all of the applications of the procedure examined values very close to
theoretical predictions were observed. (See Table 8 of this report).
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